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Abstract

Differential encoding techniques are fast and easy to implement.

However, a major problem with the use of differential encoding

for images is the rapid edge degradation encountered when us-

ing such systems. This makes differential encoding techniques

of limited utility especially when coding medical or scientific

images, where edge preservation is of utmost importance. We

present a simple, easy to implement difl'erentlal image coding
system with excellent edge preservation properties. The coding
system can be used over variable rate channels which makes it

especial/y attractive for use in the packet network environment.

_ntroduc_ion

The transmission and storage of dlgi_.ai images requires an enor-

mous expenditure of resources, necessitating the use of compres-

sion _echr.iques. These techniques include relatively low com-

plexity predictive techniques such _ Adaptive Differential Pulse

Code Modulation (ADPCM) and its variations, as well as rel-

atively higher complexity techniques such as transform coding
and vector quar, tization [),21. .Most compression schemes were

originally deve)oped for speech and their app)ication to images is

at times problerr, a_ic. This is especially true of the low comp)ex-

icy predictive techniques. A good example of this is the highly

popular ADPCM scheme. Origin'dly designed for speech [3], it

has been used with other sources with varying degrees of suc-

cess. A major prob)em with its use in image coding is the rapid

degradation in quality whenever an edge is encountered. Edges

are perceptually very important and occur quite often in most

images. Therefore, the degradation of edges can be perceptually

ver.v annoying. If the images under consideration contaAn medi-

cal or scientific data, the problem becomes even more important,

as edges provide position information which may be crucial to
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the viewer. This poor edge reconstruction quality has been a

major factor in preventing ADPCM from becoming as popular

for image coding as it i$ for speech coding.
While good edge reconstructlon capability is an important

requirement for image coding schemes, another requirement that

is gaining in importance with the proliferation of packet switched
networks, is the ability to encode the image at different rates.

In a packet switched network, the available channel capachy is

not a fixed quantity, but rather fluctuates as a function of the

load on _he network. The compression scheme must therefore be

capab]e of operating at different rates as the ava.ilabIe capacity

changes. This means that it should be able to take advantage

of increased capacity when it becomes available _hile providing

graceful degradation _'hen the rate decreases to match decreased

available capacity.
In this paper we describe a DPCM based coding scheme

which has the desired properties listed above. It is a low com-

plexity scheme with excellent edge preservation in the recon-

structed image. It takes full advantage of the available channel
capacity providing ]ossless compression wl',en suf_ciezt capacity

is available, and very graceful degradation when a reduction in
rate is required.

)¢olation and..:Problem _"or_vla_ion

The DPCM system consists of two main blocks, the quantizer

and the predictor (see Fig. 1). The predictor uses the correlation

between samples of the waveform to predict the next sample
va2ue. This predicted value is removed from the waveform at

the transmitter and reintroduced at the receiver. The prediction
error is quantized to one of a finite number of values which is

coded and transmitted to the receiver. The difference between

the prediction error and the quantized prediction error is called

the quantization error or the quantization noise. If the channel

is error free, the reconstruction error at the receiver is simply the

quantization error. To $ee this, note (Fig. 1) that the prediction
error e(k) is given by

e(k) = _(k) - p(k)

where the predictedvalueis givenby

(1)

and

p(k)=_aA(_ - j) (2)
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_(_) = e, Ck)+ ,(k). (3)

Assuming an additive noise model, the quantized prediction

error ev(k) can be represented as

e,(k)= e(k)+ .,(k) (4)

where nq(k) denotes the quantization noise. The quanfized pre-

diction error is coded and transmitted to the receiver. If the

channel isnoisy thisis received as i_(k) which is given by

_(k) = e,(a-)+ ,_,(I,-) (S)

where nt(k) represents the channel noise. The output of the

receiver ,_(k)is thus given by

where

_(k)= f(k)+ _,(k) (6)

the additional term nr(k) being the result of the introduction

of channel noise into the prediction process. Using (l), (4), (5),

and (7) in (6) we obtain

i(k) = _,(_:)+n,(_)+ ,,(J:) + n,(_'). (s)

If the channel is error free, the last two terms in (8) drop out

and the difference between the origin-,,.] and reconstructed sigr, al

is simply the quantizaticn error.

When the prediction error is small it falls into one of the

inner levels of the quantizer, and the quantizafion noise is of a

type referred to as granular noise. If the prediction error fails in

one of the outer le_ e'.s of the quantizer, the incurred quant]zation

error is called overload r.o_se. Because cf the way the granular

noise is generated it is genera:])' smaller in magnitude than the

overload noise and is bounded by' the size of the quantizalion

interval. The overload no!se on the other hand is esser, ti_ly

unbounded and can become very large depending on the size of

the prediction error. As edge p_xels are rather difficult to predict,

the corresponding prediction error is generally large, and this

leads to large overload r,o]se values. Furthermore, because this

error effects not only the reconstruction of the current pixe],

but also future predictions, the prediction errors corresponding

to the next few pixe]s also tend to be large,leading to an edge

"smearing" effect.

Reduction of the edge degradation can therefore be obtained

by reducing or eliminating the slope overload noise. Reduc-

tion of the slope overload noise can be obtained by improving

the prediction process. Gibson [4] analyzed ADPCM systems

with backward adaptive prediction, and showed that the track-

ing ability of the adaptive predictor can be improved by the

addition of zeros in the predktor. Motivated by these results,

Sayood and $chekall [5] designed ADPCM systems for image

coding with ARMA predictors. Their results show that some

reduction in the edge degradation is possible with the use of

adaptive zeros in the predictor. While the use of these predic-

tors improves the edge reconstruction there is stillsignificant

degradation in the edges. One technique to further improve the

edge performaz_ce was developed by Schekall and Sayood [6],

which uses the Jayant quantizer as an edge detector. The over-

load noise isthen reduced by sending a quantized representation

of the noise through a side channel. The advantage of this ap

proach is that it can be added to existing ADPCM systems.

The disadvantage is that the use of a side channel introduces

synchronization problems. In this paper we propose a different

approach for edge preservation which does not require a side

channel. This approach is described in the following section.

Proposed Approach

The approach taken in this paper is a variation on the standard

rate-distortion tradeoff. The basic idea is that the slope over-

load noise can be reduced by increasing the rate. However rather

than increasing the rate for encoding each and every pixel, there

isonly an instantaneous rate increase whenever slope overload

isencountered. Tht way this is implemented is outlined in the

block diagram of Figure 2. A DPCM system is followed by a

]oss]essencoder at the transmitter. At the receiver the inverse

operations are performed. The DPCM system differsfrom stan-

dard DPCM systems in that the quantizer being used has an

unlimited number of levels. In practice what this means is that

if the input has 25{} levels, which is standard for monochrome

images, then the DPCM quant]zer will have 512 levels. This

effectively eliminates the overload noise making the distortion

a function of the quantizer stepsize A. Of course by itselfit

also eliminates an)' compression that may have been desired, in

fact it requires an increase of one bit in the rate. The com-

pression is obtained by use of the losslessencoder. The lossless

encoder output alphabet consists of N codewords. These code-

words correspond to N consecutive levels in the quantizer. Let

the smallest levelbe labeled z£ and the largest levelbe labeled

zH. ]f the quantizer output e¢(k) is a level between ZL and

rH, then the ]oss]ess encoder puts out the corre._ponding chan-

nel symbol, lf, however, %(k) is greater than zH the encoder

puts out the symbol corresponding tozn. A new value %:(k)

is then obtained by subtracting z n from ec(k ). If this value is

less than zH then it is encoded using the corresponding code-

word in the lossless encoder output alphabet. Otherwise, zH is

ag_n subtracted from eO(k ) to generate %:(k). This process is

continued till some e_.(k) where

e,,.(k) = e,(_')- nzH

and %,_(k) is less than z,=/. A similar strategy is followed when

%(k) < ZL. Thus the instantaneous rate isincreased by a func-

tion of n whenever the prediction error fallsoutside the closed

interval [zL, zH].

Example : Consider a DPCM system with a stepsize A of 2

where the input output relationship is given by

Q[z]=2k if 2k-l<z<2k+l; k=0,-*_l,+2,...

Let the ]osslessencoder output alphabet be of size eight with

zz, = -4, and zH = 10. If the input e(k) is 7 the quantiger out-

put %(k) is 8, which is in the ]ossless'i_ncoder output alphabet

and therefore this value is encoded as a single codeword. If e(k)

is 15 then eq(k) is 16, which is larger than z/q. In this case,

the encoder puts out the codeword corresponding to ZH and

generates eo(k ) = 16 - l0 = 6 which is in the encoder output

alphabet. Therefore, the encoder output consists of two code-

words representing zH(]0) and 6. lfthe input is -7,e¢(k) = -6

which is less than zL. Thus the loss]assencoder oulput consists

of two symbols. One corresponding to the value of ZL(-4) and
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one correspondingto the valueof -2. Note thatifthe {,,putis

l0 or -4 (i.e.zH or zL) then the output willbe the sequence

I0,0 or -4,0.
One of the consequences of this type of encoding is that it

can generate runs of zL and zH whenever the image contains
a large number of edges. Fortunately the encoding scheme also

provides a significant number of special symbols that can be used

to encode these runs. For example, the sequence =H followed by

a negative value and the-sequence z/. followed by a positive value

would not occur{n thenormal courseofevents.These sequences

can thereforebe used to encode the runlengthsof zL and zH.

Consider for example a system in which A is 2 and zL is - 4.

The output ofthe loss]essencoder thereforecorrespondsto the

values-4,-2,0,2,4. In the standard system a value of 4 is

alwaysfollowedby a valueof 0 or 2. Similarlya valueof -4 is

alwaysfollowedby a valueof0 or -2. Therefore.thesequences

4- 2 and -4 + 2 can be used as specialsymbols todenote runsof

4 or -4. A simplestrategyisto repJaceeverytwo 4%,(or-4's)

afterthe initial4 by a -2 (or 2). For example a valueof 10

would stillbe representedby 4 4 2. However a valueof 14 would

be representedby 4 .2 2 insteadof 4 4 4 2. Similarlya value

of 18 would be representedby 4 -2 4 2 and a valueof 22 would

be represented by 4 -2 -2 2. For this particular scheme, a run of

lengthn would be representedby n - [-_J codewords. When

the sizeof the losslessencoder output is increased,the number

ofspecialsymbols availablealsoincreasesand the codingof the

runscan be performedmore efficient].v.

These specialsequencescan alsobe used to signala change

of rate for applications in which the available channel capadty
changes w)th time. The actual change can be accomodated by

changingthe stepsizeand reducingthe]osslessencoder codebook
sizeby the same amount. Severalofthe systemsproposed above

were simulated.The resultsof thesesimulationsare presented

in the next section.

Results

Four s)'ste_softhe type described]n the previoussectionhave

been simulated.Two of the systems simulateduse a one tap

fixedpredictor,while the other two use a one pole fourzero

predictor whh the zeros being adaptive. One of the systems in

each casecontainsthe ]osslessencoder followedby a runlength

encoder while the other containsonlythe losslessencodes with-

out the ru_lengthencoder.The testimages used were the USC

GIRL image, ar,d the USC COUPLE image. Both are 256 X

256 monochrome eightbitimages and have been used oftenas

testimages. The objectiveperformance measure _'erethe Peak

Signalto .'x'o]seRatio (PS.NR) and the Mean Absolute Error

(M..kE)which are definedas follows:

2552

PS.NR = 10log20 < (s(k)) - $(k)_>

MAE =< I_(k) - S(k)l>

where < • > denotes the average value.

Several ]nitlal test runs were performed using different num-

ber of levels,differentvaluesof zL and differentvalues of A

to get a fee]forthe optimum valuesof the variousparameters

(Given =L and A, zl-/]sautomaticallydetermined.).%Ve found

that an appropriateway of selectingthe valueof z/.was using

the relationship

=L= -t-_-_JA

where [zJ isthe largestintegerlessthan or equalto =, and N

isthe sizeof the alphabet of the ]oss]esscoder. This provides

symmetric codebook when the alphabet sizeisodd, and a,

codebook skewed to the positivesidewhen the alphabetsizeis

even. The zerovalueisalways in the codebook.

As the alphabetsizeisusuallynot a power oftwo,thebinary

code for the output alphabet will be a variable length code. The
useof variablelengthcodes always bringup issuesof robustness

with respect to changing input statistics. With ",h{s in mind,

the rate was calculated in two different ways. The first was to

find the output entropy, _nd scale it up by the ratio of symbols

transmitted to the number of p]xels encoded. We call this rate

the entropy rate, which is the rnlnimum rate obtainable if we

assume the output of the losslessencoder to be memoryless.

While thisassumption isnot necessarilytrue,the entropy rate

givesus an idea about the best we can do with a particular

system. We willtreatit as the lower bound on the obtainable

rate.We alsocalculatedthe rateusinga predeterminedvariable

lengthcode. This code was designedwith no priorknowledge

of thepro_)abilitiesof the differentletters.The onlyassumption

was thatthe lettersrepresentingtheinnerlevelsof thequanther

were alwa.vsmore likelythan the lettersrepresentingthe outer

levelsof the quantizer.The code treeusedisshown inFigure3.

Obvlously,thiswillbecome highlyineffic}entinthe caseofsmall

alphabet sizeand small_A,as in thiscase,the outerlevelsz/,

and zH wit]occurquitefrequently.This ratecan be viewed as

an upper bound on the achievablerate.

The resultsforthe system with a one tappredictorand with.

out the runlengthencoder are shown in TablesI and 2. Table 1

containsthe resultsfor the COUPLE image,whileTable2 con-

tainsthe resultsforthe GIRL image. In the tableRL denotes

the entropy rate while J_U is the rate obtained Using the Huffman

code of Figure 3. Recall that for image compression schemes,

systems with PSNR values of greater than 35 dB are percep-

tually almosl identical. As can be seen from the PS.NR val,ies
in the tables there is very little degradation whh rate, and in

fact if we use the 3,5 dB criterion there is almost no degrada-

tion in image quality until the rate drops below two bits per

pixe]. This can be verified by the reconstructed images shown

in Figure4. Each picturein Figure 4 consistsof the original

image, the reconstructed image and the error image magnified
I0 fold.In each of the pictures,itisextremelydifficultto tell

the sourceor originalimage from the reconstructedor output

image. In fact,in the caseof the image coded at ratesabove

two bitsper plxelitiswellnigh impossible.This subjectiveob-

servationissupported by the errorimages in each casewhich

are uniform in texturethroughout without any of the standard

edge artifactswhich can be usuallyseenin the errorimages for

most compressionschemes.

We can see from the resultsthatifthevalueof A and hence

z/.isfixed,thesizeofthe codebook hasno effectinon the perfor-

mance measures. Thisisbecause the onlyeffectofreducingthe
codebook sizeunder theseconditionsistoincreasethe number

of symbols tra.nsmitted. While this has the effect of increasing
the rate,because of the way the system isconstructed,itdoes

not influencethe resultingdistortion.The drop in ratefor the

same distortionas the alphabetsizeincreasescan be c]ear]y seen
from the results in Tables 1 and 2.
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Table 3 shows the decreasein ratewhen a simplerun]ength

coder isused. The runlengthcoder encodes long stringsof zc

and zh, using the speciM sequencesmentioned previously.As

can be seen from the resultsthe improvement providedby the

currentrunlengthencoding scheme issignificantonly forsmall

alphabetsand smallvaluesof A. This isbecause itisunder

theseconditionsthatmost ofthe long stringsofzL and zH are

generated.However we are not a.syet usingmany ofthe special

sequencesinthe largera]phabetcodebooks,so thereiscertainly

room for improvement.

The one tap predictorwas replacedwith an adapth'eARMA

predictorwith a fixedpo]eand fouradaptirezeros.The fixed

polewas at a lag of 257 (pixelabove) whilethe zeroswere at

lagsof one,two, threeand four. The adaptionw_ performed

usinga sample LMS algorithm _s follows.Let Bt be the vector

of predictorcoefficientsat time k. The adaptionaJgorithmwas

B_÷t = Bk + pe_(L)Ek

where p is the adap_ion s:epsize and

E, = (%(k- 1).e_(k- 2),e_{L--3).%(k- 4)) 7. •

The resuhs from m,]ng _?.is predictor are shown in Tables 4, 5

and (3. \Vh]le there is some ir:,provemer, t in all cases, the results

for the COUPLE image show a grea_er improvement than the

results for the GIRL 5m_ge. This can be explained by noting

that t)_eCOUPLE image co,_tains many more edges than the

GIRL image. As t]_e AR?,I.-_ T,redictor _ends to improve predic-

tor performance when edges are encountered, the improvement

in perforrr.ar, ce occurs in 1he image with more edges.

Cc :,c]us_o._

We Lave demcr_s_rated a simple image coding scheme whkb is

vcr.v cas.v :o implc."F,cr,t in r<ahime and has excelIe_,t edge preser-

va',Jor_ prc p<r:ies ¢_er z w}de rar./_e of rh_es.

Tl.is .':.',stcm would be especla_l)" useful in transmkth_g im-

p.gas over cf.zr;neis where _Lc zved]abb ba:,dwidth may be vary.

The edge pre._ervi;_g qua!by _s especially useful in the e:acoding
of scie:,lific and medic_ in,egos.
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Fig. 2 Propose_ Encoder Structure
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Fig. 3 Variable Leng%h Code Tree
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Delta MAE PSNR (dB)

Size = 3 Size = 5 Size = 8

_L Ru R_ Ru RL Ru

2 0.5067 51.0830

4 1.4790 42.7898

6 2.4676 38.6.565
8 3.3697 36.0009

12 5.1359 32.3682

6.1615 7.1418 4.9334 6,863.5 4.4404 6.6884
3.8909 4.0587 3.3637 2.7982 3.]673 3.6939
2.9577 3.0137 2.65.53 2.7729 2.5490 2.7023

2.4314 2.4972 2.2327 2.2756 2.1682 2.2267
1.8277 1.9800 1.7233 1.7963 1.6930 1.7669

Table 1: Perform_ce results for the COUPLE image, aJpb_be_ size 3, ,5 and 8.

Size = 3 Size = ,5 Size = 8

De]tL MAE PSNR (dB) RL P,.U RL RU R/, RU

2 0..5067 51.0630

4 1.4790 42.7898

6 2.4676 38.6565
8 3.3697 36.0009

]2 6.]3_9 32.3682

6,2521 7.8120 .5.0554 7.4713 4.5635 7.1275
4.0088 4.3976 3.7414 4,0592 3,2668 3.8740

3.0819 3.2547 2.7570 2.9279 2.6468 2.8063
2..5543 2.6560 2.3272 2.3783 2.2617 2.2931

1.9426 2.1122 1.8046 1.8439 1.7756 1.8009

Tab','e 2: Pe:fo:m_nce ;esu]ts for :he GIRL image, alphzbet size 3, .5 and 8.

Size= 3 Size= 5 Size= 8

Without RL With RL Without RL V,'hhRL Without RL With KL

Encode; Encoder Encoder Encoder E_coder Encode;Delta

2 6.16 5.44 4.93 4.34 4.44 4.29

4 3.89 3,60 3,36 3.25 3.16 3.15

6 2.96 2,81 2.66 2 £3 2,55 2.5.5
8 2.43 2.35 2.23 2.22 2.17 2.17

12 1.83 1,80 1,;'2 1.72 1.69 1.69

Table 3: Compz:ison ofEntropy taresbetween tvste,'nwhh Runleng:h (]R.L)

Encode; _d _ithout KL Enco_e; for COUPLE image.

Size = 3 Size = 5 Size = 8

Delta MAE PSFIR.(4B) ac Ru ILL RU RC Ru

2 1.59 46.11
4 2.00 40.71

6 2.96 37.42

8 3.$6 35.11
12 _.61 31.79

4.71 5.00 3.94 4.77 3.63 4.69

3.02 3.04 2.70 2.82 2.50 2.76

2.33 2.38 2.14 2.18 2.09 2.13

1.94 2.05 1.81 1.87 1.79 1.83

1.49 1.72 1.42 1.56 1.41 1.55

T_b]e 4: Perfo;m_ce resuhs fo; COUPLE image with adaptive ARMA predictor.

S_ze= 3 She = 5 She = $

Deha MAE PSNK (dB) RL Ru RL RU IZL Ru

2 1,07 45.99
4 2.06 40.55
6 3,06 37.15

8 4,04 34.7.5
12 6,08 31.23

5.66 6.33 4.59 6.06 4,18 5.92
3.60 3.69 3,15 3.42 2.99 3.32
2.78 2.82 2,51 2.56 2.42 2.4S

2.31 2.38 2.12 2.14 2.07 2,09
1.79 1.9,5 I£6 1.73 1£5 1.70

Table 5: Performance results for GII_L im_.ge with adaptive ARMA predictor.
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Size = 3 Size = 5 _],',, = ',

Without RL With RL Without RL With RL V,ith,_::: I-:1 V,i:h RL

Delta Encoder Encoder Encoder Encoder E_cod_.r I::_coder

2 4.71 4.25 3.94 3.70 3.63 3.57

4 3.02 2.86 2.70 2.67 2.60 259

6 2.33 2.26 2.14 2.13 2.09 200

$ 1.94 1.90 1.81 l._J1 l.T9 1.TO

12 1.49 1.45 1.42 1.42 1.41 1.4 ]

Table 6: Comparison of Entropy rates between systems with and witho"-t

the Rudength En¢oder for the COUPLE image.

Figure 4(a). GIRL image coded at entropy rate of 1.7 bpp.

Figure 4(b). GiRL image coded at entropy rate of 1.5 bpp.
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Appendix 2- Item 7


